B.Sc. 2nd Semester (General) Examination, 2022 Subject: Statistics Paper: GE-II/CC-II (Introductory Probability)

Time: 2 Hrs

Full Marks: 40

 $2 \times 5 = 10$

 $5 \times 2 = 10$

The figures in the margin indicate full marks. Candidates are required to give their answer in their own words as far as practicable. Notations have their usual meaning.

- 1. Answer any five from the following questions:
 - (a) Give the definition of the sample space.
 - (b) Write down the classical definition of probability.
 - (c) What do you mean by a random variable?
 - (d) Give an example of a continuous random variable.
 - (e) State weak law of large numbers.
 - (f) Give the p.m.f of a hypergeometric distribution.
 - (g) Define the moment generating function of a random variable.
 - (h) If $P(A_1)=0.5$, $P(A_2)=0.3$ and $P(A_1 \cap A_2)=0.20$, find $P[(A_1 \cup A_2)^C]$
- 2. Answer any two from the following questions:
 - (a) State and prove Chebyshev's inequality.
 - (b) Suppose that the arithmetic mean and the standard deviation of a binomial distribution (with parameters *m* and *p*) are respectively 4 and $\frac{\sqrt{8}}{3}$. Find the value of *m*

and *p*.

- (c) A card is drawn from a well-shuffled pack of playing cards. What is the probability that it is either a spade or an ace?
- (d) Derive the moment generating function of geometric distribution.
- 3. Answer any two from the following questions: $10 \times 2 = 20$
 - (a) (i) State and prove Bayes' theorem.

(i) (ii) If A₁ and A₂ are mutually exclusive events and $P(A_1 \cap A_2) \neq 0$, then prove that

$$P[A_1 | A_1 \cup A_2] = \frac{P(A_1)}{P(A_1) + P(A_2)}$$
 5+5=10

- (b) Suppose that A₁ and A₂ are two independent events. Then show that,
 (i) A₁ and A^c₂ are independent
 .(ii) A^c₁ and A^c₂ are independent.
 5+5=10
- (c) (i) Show that the mean and variance of a Poisson distribution are equal.
 (ii) Suppose x is a Poisson variate with parameter 2. Find P(X = 3), P(X≤2) and P(X>1). [Given e⁻² = 0.1365]
 5+5=10
- (d) (i) Define a standard normal variable X. Also show that the distribution of X is symmetric. Z

(ii) If Z is a standard normal variate, find the values of $P[1 < Z \le 2]$ and $P[Z \ge 2]$.

5+5=10

